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Abstract

A linear stability analysis has been implemented for a viscous flow induced by internal heat sources in a vertical

annular porous region bounded by two concentric cylinders. The analysis is made under the assumption that the flow is

parallel to the cylinders. The perturbation equations are solved by a Chebyshev collocation spectral method. Results are

given for a wide range of gaps. The critical curves in several planes formed by the physical parameters of the problem

are plotted. In particular, the effects of the porous parameter and the radius ratio are examined.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Nuclear energy continues to attract scientists though

they are examining various means to produce energy.

But the accidents that may occur in nuclear reactors

pose a severe problem to them. In the risk assessment of

nuclear power plants, the possibility and the conse-

quences of a melt escaping from the core are usually

considered. During the course of an accident, molten

fuel may interact with coolant, and get converted into

fine particles because of some thermal reactions. These

small particles quickly solidify in the coolant and settle

on the internal structure forming a saturated porous

particle bed. Fixed porous beds are also used as the basis

for reacting systems in certain reactors such as tubular

bed reactor and packed bed enzyme reactor. Hence a

thorough understanding of heat and mass transfer in

porous media and their stability, arising because of

volumetric energy sources has become an important is-

sue especially in nuclear [1–3] and chemical engineering

[4,5].
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When a fluid permeates a porous medium, the actual

path of an individual particle cannot be followed ana-

lytically. The gross effect must be represented by a

macroscopic law relating the fluid flux and the dimen-

sions of porous structure which is the Darcy law. It

applies to unidirectional flow in an unbounded porous

medium. It does not account for inertial and boundary

effects that become important when the flow is curvi-

linear and near a solid surface. But it is well known that

the curvature of the fluid path gives rise to inertial ac-

celeration. This drawback was eliminated by Lapwood

[6] after his generalization of Darcy�s law in the form

q
o�vv�

ot�

 
þ ð�vv� � r�Þ�vv�

!
¼ �r�p� þ q�gg � l

K
�vv� ð1Þ

which we call as Darcy–Lapwood (DL) equation.

Moreover if a high-porosity medium is bounded by an

impermeable solid surface the resistance offered by it to

the flow should be included in addition to Darcy fric-

tion. Hence the viscous resistance leðr�Þ2�vv� was in-

cluded [7] to the form

q
o�vv�

ot�

 
þ ð�vv� � r�Þ�vv�

!
¼ �r�p� þ q�gg � l

K
�vv� þ leðr�Þ2�vv�

ð2Þ
ed.
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Nomenclature

cp specific heat capacity

Da Darcy number

g acceleration due to gravity

Gr Grashof number

k wavenumber

K permeability

k̂k unit vector in the z direction
n number of collocation points

p pressure

Pr Prandtl number

q Qm=ððqcpÞfjfÞ
Qm volume density of internal heat sources

r radial coordinate

R radius ratio

r1; r2 nondimensional radii of inner and outer

cylinders

R1;R2 radii of inner and outer cylinders

t nondimensional time

T nondimensional temperature

�vv nondimensional velocity vector

x r � 1þR
1�R

z vertical coordinate

Greek symbols

b coefficient of thermal expansion

j thermal diffusivity

k complex eigenvalue

l viscosity

le effective viscosity

�ll viscosity ratio

m kinematic viscosity

q density

r porosity parameter

X heat capacity ratio

W nondimensional stream function

r Laplacian operator

Superscripts

* dimensional quantity

ðiÞ ith derivative

Subscripts

c critical state

m porous medium comprising fluid and solid

phases

f fluid phase

0 basic state
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which reduces, for steady Reynolds number flow to one

proposed by Brinkman [8] for creeping flow. Here le

denotes the effective viscosity of fluid based on a vol-

ume-averaging process in interconnected pores. Here-

after we will call (2) as Darcy–Lapwood–Brinkman

(DLB) equation. This model is flexible in the sense that

it has a parameter K, the permeability, such that it

reduces to a form of Navier–Stokes equation as

K=L2 ! 1 and the Darcy�s law as K=L2 ! 0 where L is

the characteristic macroscopic length scale. For suffi-

ciently large fluid velocities the form drag due to the

presence of solid obstacles becomes comparable with the

surface drag due to friction. This introduces a quadratic

drag as pointed out by Forchheimer. But the present

work is merely intended to give some light on the hy-

drodynamical stability properties of flow through po-

rous media. Moreover there is some uncertainity about

the validity of DLB model with Forchheimer correction

at large porosity (see [9]). Hence the quadratic drag is

neglected and the entire work is based on DLB model.

Thermal convection of a fluid contained between two

vertical walls kept at different isothermal temperatures is

one of the typical convection systems with simple geo-

metrical and thermal constraints. The situation becomes

entirely different when the motion is induced because of

uniformly distributed internal heat sources with iso-

thermal walls. It has not been well studied as that of the
differential heating counterpart. In this case two counter-

rotating vortices are formed because of the underlying

even parabolic temperature profile. Also the transi-

tion from stationary to oscillatory mode of instability

becomes continuous. When the curvature effect is in-

cluded, this even temperature profile gets skewed to-

wards the inner wall. This converts the vortices into a

single chain of eddies originating near the inner wall.

Much of the work on natural convection because of

internal heat sources has been concerned with porous

layer between two planes [9]. Only in the last two de-

cades, the authors have started investigating other types

of porous configurations, particularly cylindrical enclo-

sures.

Stewart and Dona [10] considered free convection in

a closed finite vertical porous cylinder and found that

the isotherms were compressed near the top and side

walls of the cylinder as Rayleigh number is increased.

Their work was extended to an aspect ratio of 20 by

Prasad and Chui [11] in a Darcy porous medium. Farr

et al. [12] studied the stability of an exothermic reaction

driven convection in a Darcy porous medium contained

in a closed vertical cylinder. They found that the onset of

convection has a threshold Ra as the Frank Kamenetskii

parameter is increased from zero to the ignition point.

Vasseur et al. [13] discussed convection in an annular

porous layer between horizontal concentric cylinders.
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Their calculations showed that, at large Ra values the

flow structure consists of a thermally stratified core and

two boundary layers. Numerical study of two-dimen-

sional convection in a horizontal annulus filled with

porous material in the presence of a permeable bound-

ary was treated by Stewart and Burns [14]. Convective

heat transfer in a packed vertical tube with axial and

radial dispersions was studied by Adnani et al. [15].

A conducted literature survey indicates no work re-

porting convection in a heat generating fluid and its

observability in an annular geometry with variable cur-

vature. The earlier studies by Shikhov and Yakushin [16]

and Kolyshkin and Vaillancourt [17] regarding the

nonuniformity of heat sources have shown that curva-

ture could substantially affect the critical boundary.

Hence the purpose of the present work is to investigate

the stability of natural convection in a vertical annular

porous layer confined between two concentric vertical

cylinders with special reference to curvature which has

some important applications to the core-melt formation

problem discussed earlier.
Fig. 1. A diametral cross-section of the physical configuration.

2. The equations

Let us consider a sparsely packed isotropic and ho-

mogeneous porous layer saturated with a viscous in-

compressible fluid. The layer is confined between two

vertical long concentric cylinders of radii R1 and R2

(R1 < R2). The temperature of both the cylinder walls

are kept constant and equal, which is taken as the ref-

erence point. We choose a cylindrical polar coordinate

system, where the z-axis is directed opposite to gravity �gg
(Fig. 1). The origin of the coordinate system is located in

the cylinders� axis. The fluid is heated by uniformly

distributed heat sources of volume density Qm through-

out the layer where the subscript m refers to overall

medium comprising both solid and fluid phases. Further

it is assumed that both the fluid and solid phases do

remain in local thermal equilibrium. All the physical

characteristics are taken as constant, except the density

which varies linearly with temperature in the buoyancy

term (Boussinesq approximation).

The equations governing the motion of a viscous

incompressible fluid in the above configuration under

Boussinesq approximation are

q
o�vv�

ot�

 
þ ð�vv� � r�Þ�vv�

!
¼ �r�p� � l

K
�vv� þ leðr�Þ2�vv�

þ gbT �k̂k ð3Þ

ðqcÞm
oT �

ot�
þ ðqcpÞfð�vv� � r�ÞT � ¼ kmðr�Þ2T � þ Qm ð4Þ

�
div�vv ¼ 0 ð5Þ
where �vv� is the velocity of the fluid; T �, the temperature;

p�, the pressure; K, the permeability of the porous me-

dium and k̂k, the unit vector along the z-axis.
We define h ¼ ðR2 � R1Þ=2, R ¼ R1=R2, r1 ¼ 2R=

ð1� RÞ, r2 ¼ 2=ð1� RÞ and introduce the nondimen-

sional variables r ¼ r�=h, z ¼ z�=h, t ¼ t�=ðh2=mÞ, �vv ¼ �vv�=
ðgbqh4=2mÞ, p¼p�=ðqgbh3=2Þ, T ¼T �=ðqh2=2Þ. Let q¼
Qm=ððqcpÞfjfÞ, Gr¼gbqh5=2m2 be the Grashof number,

Prm¼km=ððqcpÞfÞm the Prandtl number, r¼ h=
ffiffiffiffi
K

p
the

porosity parameter, �ll¼le=l the ratio of viscosities and

X¼ðqcÞm=ðqcpÞf the heat capacity ratio. In dimension-

less variables, Eqs. (3)–(5) become

o�vv
ot

þ Grð�vv � rÞ�vv ¼ �rp � r2�vvþ �llr2�vvþ T k̂k ð6Þ

X
oT
ot

þ Grð�vv � rÞT ¼ 1

Prm
r2T þ 2

Prm
ð7Þ

div�vv ¼ 0 ð8Þ

Since our interest is a fluid saturated sparsely packed

porous medium, X can be assumed, with sufficient ac-

curacy, to be one. We seek a steady parallel solution for

Eqs. (6)–(8) of the following type:

�vv ¼ ½0; 0; v0ðrÞ�; T ¼ T0ðrÞ; p ¼ p0ðzÞ ð9Þ

The flow (9), may be realized in the middle portion of a

sufficiently long vertical layer of fluid filled porous me-

dium where the end effects are negligible. Substituting

(9) into Eqs. (6)–(8) leads to the system



Fig. 2. Basic velocity profiles for different r when �ll ¼ 1 and

R ¼ 0:4.
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d2v0
dr2

þ 1

r
dv0
dr

� r2

�ll
v0 ¼

1

�ll
ðD� T0Þ ð10Þ

d2T0
dr2

þ 1

r
dT0
dr

¼ �2 ð11Þ

where D is the separation constant. r is related to the

Darcy number, Da ð¼ �llK=h2Þ by Da ¼ �ll=r2. The cor-

responding boundary conditions are

v0ðriÞ ¼ 0; T0ðriÞ ¼ 0; i ¼ 1; 2 ð12Þ

The solution at the basic state is given by

T0ðrÞ ¼ � r2

2
þ A log r þ B ð13Þ

v0ðrÞ ¼
X1
i¼1

ciðr � �rrÞi ð14Þ

where

A ¼ � r22 � r21
2 logR

; B ¼ r22
2
� A log r2 and �rr ¼ r1 þ r2

2

An approximation to (14) is obtained with the first five

terms (up to i ¼ 4) as v0ðxÞ for R ¼ 0:8 approach the

velocity profile arising between two planes reported

in our previous work [20] and the truncated terms

produce no significant effect. The explicit expressions

for ci�s (i ¼ 0–4) are too lengthy and are provided in

Appendix A.

We consider the case of a closed channel. This war-

rants the fluid flow through the cross-section of the

channel to be zero and henceZ r2

r1

rv0ðrÞdr ¼ 0 ð15Þ

The basic velocity profiles for different values of r are

shown in Fig. 2 in terms of the coordinate

x ¼ r � 1þ R
1� R

ð16Þ

It is seen that r retards the basic flow and distorts it

slightly. Also as the spacing between the cylinders be-

comes smaller, the velocity profile becomes almost

symmetric with an upflow at the centre and two down-

flows near the boundaries of the channel.

We consider the stability of the basic state by the

method of small perturbations. Let us consider the

perturbed motion �vv0 þ �vv, T0 þ T , and p0 þ p, where �vv, T
and p are small unsteady perturbations, �vv0 ¼ v0k̂k. Let us
assume that the perturbed quantities do not depend on

the azimuthal direction (so-called axisymmetric pertur-

bations). Then Eqs. (6)–(8) for the above perturbed state

after linearization take the form:
o�vv
ot

þ Gr½ð�vv0 � rÞ�vvþ ð�vv � rÞ�vv0�

¼ �rp � r2�vvþ �llr2�vvþ T k̂k ð17Þ

oT
ot

þ Gr½ð�vv0 � rÞT þ ð�vv:rÞT0� ¼
1

Prm
r2T ð18Þ

div�vv ¼ 0 ð19Þ

It is convenient to introduce the stream function Wðr; zÞ
as

vr ¼ � 1

r
oW
oz

; vz ¼
1

r
oW
ox

ð20Þ

We set

Wðr; z; tÞ ¼ /ðrÞ expð�kt þ ikzÞ
T ðr; z; tÞ ¼ hðrÞ expð�kt þ ikzÞ

ð21Þ

where / and h are the amplitudes of the normal per-

turbations; k, the wavenumber and k, a complex eigen-

value. Substituting (21) in Eqs. (17)–(19), we obtain the

amplitude equations

L1/¼ r2

�ll
/ð2Þ
�

� 1

r
/ð1Þ � k2/

�
þ 2k2/ð2Þ � 2k2

r
/ð1Þ

þ k2

r2

�
� k4

�
/þ ikGr

�ll
v0 /ð2Þ
� 

� 1

r
/ð1Þ � k2/

�

þ/
vð1Þ0

r

 
� vð2Þ0

!!
� r

�ll
hð1Þ � k

�ll
/ð2Þ
�

� 1

r
/ð1Þ � k2/

�

ð22Þ

L2h ¼ k2hþ ikGrPrm v0h

 
� T ð1Þ

0

r
/

!
� kPrmh ð23Þ
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where

L1 ¼ r
d

dr
1

r
d

dr

� �� �2

; L2 ¼
1

r
d

dr
r
d

dr

� �

The velocity and temperature perturbations vanish at

the sidewalls and hence the boundary conditions are

/ðriÞ ¼ 0; /ð1ÞðriÞ ¼ 0; hðriÞ ¼ 0; i ¼ 1; 2 ð24Þ
3. Method of solution

We solve the boundary value problem using the

spectral collocation method based on the roots of

Chebyshev polynomials which was successfully imple-

mented in our previous study [20]. To locate an extremal

point we proceed as follows. For fixed values of the

other parameters, we determine the Grashof number

GrðkÞ as a function of the wavenumber k corresponding

to the case ReðkÞ ¼ 0. Then the critical Grashof number

is found by setting Grc ¼ mink GrðPrm; �ll;RÞ. The con-

vergence of the numerical solution has been checked by

varying the number of collocation points n. Table 1

shows the critical states for different combinations. We

noticed that at n ¼ 13 the 2% convergence criterion is

met. Further increase in n considerably increases the

cost. So we fixed n as 13 in our calculations. In addition

to ensure that the errors in eigenvalue computations are

minimal for all the cases considered, we defined a per-

formance index P (see [18]) as

P ¼ max
16 i6 n

kkBiA:ui � kAiB:u
ik � ½ðjkBijkAkkuik

þ jkAijkBkkuikÞ���1 ð25Þ
Table 1

Critical Grashof numbers for different n (X ¼ �ll ¼ 1)

n R ¼ 0:1; r ¼ 1; Prm ¼ 5 R ¼ 0:2;r ¼ 5; Prm ¼ 1

7 738.75 3738.16

10 650.94 6549.99

11 622.81 5906.94

12 608.28 5595.55

13 602.16 5527.04

Table 2

Comparison of the present results for n ¼ 13;X ¼ 1; �ll ¼ 1 and r ¼ 0

R Prm

0.9 (results of Gershuni et al. [19] within

braces)

0.01 (0)

1

5

20

0.7 (results of Kolyshkin and Vaillancourt

[17] within braces)

5

20
Here ki ¼ kAi=kBi and ui are the associated eigensystem.

The quantity � specifies the relative precision of the real

variable, 10�8 in the present case. The notations j � j and
k � k are used to represent respectively, the norm of a

vector and the row sum norm of a matrix. When P is less

than unity, the performance of the eigensystem code is

considered to be excellent in the sense that the residuals

(kBA:u� kAB:u) can be made as small as possible. We

monitored the value of P and kept it below 0.8.
4. Results and discussion

Before discussing the stability phenomena, it is of

interest to compare our results with previous stability

solutions. Table 2 presents a comparison between pub-

lished critical conditions and the numerical values of the

present investigation, at various Prandtl numbers.

Gershuni et al. [19] used approximating polynomials of

different lengths in their Galerkin�s method and so their

results differ slightly. Still we observe a good agreement

between the results at the same conditions which provide

a further check on the numerical accuracy.

Computations were carried out for a wide range of

parameters of the problem and the numerical results are

presented to illustrate the effect of each controlling pa-

rameter. Several combinations of parameters in the

range 06Gr6 20; 000, 0:016 Pr6 10 and 0:016R6 0:8
are considered. The value of Darcy number for many

porous materials is low. However, recently Weinert and

Lage (see [9]) reported a sample of hyperporous com-

pressed aluminium foam for which Da was about 8.

Hence to get a more general theoretical insight, we fixed

the range of r as 06 r6 5. Givler and Altobelli (see [9])
R ¼ 0:5;r ¼ 3; Prm ¼ 5 R ¼ 0:7; r ¼ 1; Prm ¼ 1

543.93 744.66

631.56 817.75

686.24 854.50

710.58 842.87

713.26 831.65

with others

Grc kc cc

1674.15 (1720) 2.01 (2.05) )0.21 ()0.16)
731.52 (744) 1.35 (1.38) )0.98 ()0.87)
254.04 (259) 1.32 (1.35) )1.36 ()1.21)
113.85 (115) 1.34 (1.40) )1.52 ()1.36)

260.02 (262.4) 1.25 (1.33) )1.23 ()1.18)
115.89 (116.4) 1.29 (1.37) )1.40 ()1.33)



Fig. 4. Marginal wavespeeds for different Prm when �ll ¼ 1,

R ¼ 0:4 and r ¼ 0.
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matched theoretical and observed velocity profiles for a

rigid foam of porosity 0.972 and observed a value of

about 7.5 for �ll. This result motivated us to vary �ll in the

interval [1,5].

In the discussion to follow, we fixed �ll as 1. We notice

that the shape of the marginal stability curves change

considerably if some of the parameters are changed. The

effect of Prm on the marginal stability curve for a clear

fluid (r ¼ 0) is shown in Fig. 3. For a low Prm approx-

imation (i.e., at Prm ¼ 0:01), the neutral curve A has a

single minimum. Since the low Prandtl number fluids are

good conductors of heat, they immediately dissipate the

temperature disturbances before the disruption of

buoyancy force to cause instability. Hence the instability

causing the single minimum by the unstable velocity

distribution is referred to as shear (S) mode.

On the other hand as Prm increases, the penetration

depth of temperature disturbances decreases, and hence

the buoyant force becomes more concentrated resulting

in an instability. In Fig. 4 we see that the critical Grashof

number Grc is considerably lowered with a correspond-

ing shift towards the lower wavenumber region even for

Prm ¼ 1. Further increase in Prm results in the develop-

ment of a nose shaped piece, labelled as B, in the curve in

the lower wavenumber region. This converts the neutral

curve into two branches, having a local minimum in

each branch separated by a local maximum. Hence the

nose shaped part of neutral curve represents the differ-

ence between full stability problem and the Orr–Som-

merfeld problem for the same velocity profiles.

Accordingly the marginal wavespeed becomes bimodal

as shown in Fig. 3. The wavespeed is measured in the
Fig. 3. Marginal stability curves for different Prm when �ll ¼ 1,

R ¼ 0:4 and r ¼ 0.
same units as the velocity of the base flow and is nor-

malized by the modulus of maximum velocity of base

flow: c ¼ ImðkÞ=ðkGr v0maxÞ, where k is a purely imagi-

nary eigenvalue and v0max, the absolute value of the

maximum nondimensional velocity. Perturbations in the

form of thermal running waves with comparatively high

phase velocity correspond to the nose shaped lower part,

and hence this branch is associated with thermal–

buoyant (TB) mode of instability.

Now we shall investigate the effect of Darcy friction

for an annular porous medium of R ¼ 0:4. The marginal

curve (Fig. 5) has two branches A and B corresponding

to the S and TB modes, as discussed earlier. When r
becomes 1, the branch A is comparatively displaced

more upwards indicating less contribution of shearing

force to the instability mechanism. A further increase in

r together with Fig. 6 shows that the TB mode plays a

vital role and remains critical during convection in a

porous medium. This could be expected as an increase in

r is proportional to an increase in the solid phase per-

centage offering more volumetric resistance to the

shearing action. At the same time a considerable uni-

form reduction in local fluid volume enhances local

density differences responsible for the development of

buoyancy force.

The stability curves of the basic motion in a wider

gap (R ¼ 0:1) on the (r;Grc) plane is shown in Fig. 7 for

various values of Prm. In general a stabilizes the base

flow. We observe that fluids with larger Prm are less

stable. The stability curve for Prm ¼ 4 is qualitatively

different from others. It has a cuspidal point near r ¼ 3



Fig. 5. Marginal stability curves for different r when �ll ¼ 1,

R ¼ 0:4 and Prm ¼ 5.

Fig. 6. Marginal wavespeeds for different r when �ll ¼ 1,

R ¼ 0:4 and Prm ¼ 5.

Fig. 7. Grc against r for different Prm when �ll ¼ 1 and R ¼ 0:1.

Fig. 8. kc against r for different Prm when �ll ¼ 1 and R ¼ 0:1.
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and this makes the flow unstable in the immediate

neighbourhood r 2 ð3; 3:5Þ as r increases. Some infor-

mation on the secondary flow may be drawn from Figs.

8 and 9 displaying critical wavenumber kc and critical

wavespeed cc. The transition from S to TB mode at

r ¼ 3 for Prm ¼ 4 is marked by jumps in both kc and cc.
Physically this represents a sudden change in the vertical

cell size. This abrupt change in the critical mechanism

for Prm ¼ 4 is shown in Fig. 10. We observe a sudden

reduction in the S mode accompanied by a shift of the
global minimum to the TB mode as r increases from

2.75 to 3. Thus a critical TB mode is introduced by r
even for lower R. This is analogous to those arising in

our previous result [20], where the basic state of con-

vection in an inclined slot is induced by the combined

effect of uniformly distributed heat sources and a mov-

ing sidewall. The perturbations begin to travel in the

downward direction when Prm becomes 10 for all r.



Fig. 9. cc against r for different Prm when �ll ¼ 1 and R ¼ 0:1.

Fig. 11. Grc against r for different Prm when �ll ¼ 1 and R ¼ 0:4.

Fig. 10. Marginal stability curves near the change in critical

mode.

Fig. 12. kc against r for different Prm when �ll ¼ 1 and R ¼ 0:4.
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Figs. 11–13 display the corresponding results for a me-

dium gap, R ¼ 0:4. We find that the vertical jump found

for the case R ¼ 0:1 is absent. Moreover, in contrast to

R ¼ 0:1, all the disturbances travel together with gravity.

As the radius ratio is found to alter the instability

mechanism involved, we have plotted the stability

characteristics against R in Figs. 14 and 15. We find that

the effect of R is to stabilize the motion initially up to
some values of R, depending on r, and then destabili-

zation becomes prominent for higher values of R. The
critical curves undergo no substantial change and be-

come nearly independent of R as the curvature becomes

smaller. The corresponding wavespeeds show a sudden

change in the direction of moving perturbations, in the

form of thermal running waves for higher R. An increase

in r shifts the onset of instability due to the TB mode to

smaller values of R. A comparison of the stability be-

haviour in a clear fluid (r ¼ 0) and a fluid saturated

porous medium (r ¼ 3) is made in Figs. 16–19 against

Prm 2 ½0; 10�, for various low values of R. This region of

R is selected as it corresponds to sudden mode changing



Fig. 13. cc against r for different Prm when �ll ¼ 1 and R ¼ 0:4.

Fig. 14. Grc against R for different r when �ll ¼ 1 and Prm ¼ 2.

Fig. 15. cc against R for different r when �ll ¼ 1 and Prm ¼ 2.

Fig. 16. Grc against Prm for different R when �ll ¼ 1 and r ¼ 0.

Fig. 17. cc against Prm for different R when �ll ¼ 1 and r ¼ 0.
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phenomena. We see that an increase in R speeds up

the mode changing effect of Prm, as discussed earlier,

when r ¼ 3 which is not felt when r ¼ 0. Moreover the

two modes come closer and finally merge with each

other, representing a continuous change from S to TB

mode.

The effect of �ll on the critical boundaries are shown in

Figs. 20 and 21. From these we infer that �ll stabilizes the

system at a constant rate. The spacing between the cyl-

inders with different �ll produces the same effect as dis-

cussed for Fig. 14.



Fig. 20. Grc against �ll for different r when R ¼ 0:4 and Prm ¼ 2.

Fig. 21. Grc against R for different �ll when r ¼ 3 and Prm ¼ 2.

Fig. 19. cc against Prm for different R when �ll ¼ 1 and r ¼ 3.

Fig. 18. Grc against Prm for different R when �ll ¼ 1 and r ¼ 3.
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5. Conclusion

A complete analysis for the stability of convection in

an annular porous layer is done. In general r makes the

system more observable. The underlying critical mech-

anism is changed to TB mode by r for lower R. The
perturbations at the onset of instability always travel

downward for higher R. R is also found to alter the basic

mechanism for instability. At the same time, the effect of

R is pronounced only in higher and medium gaps. Very

low values of R are found to accelerate the mode

changing effect of Prm. The critical curves in the (�ll;Grc)
plane are found to be linear.
Acknowledgements

This work was done when the first author (S S) held a

Senior Research Fellowship (NET) of CSIR, India.
Appendix A

The solution of the equation

d2v0ðrÞ
dr2

þ 1

r
dv0ðrÞ
dr

� G
C
v0ðrÞ ¼ G D

�
þ r2

2
� A log r � B

�

where G ¼ 1=�ll and C ¼ 1=r2 with the boundary con-

ditions v0ðriÞ ¼ 0, i ¼ 1; 2 is sought in the form

v0ðrÞ ¼
P4

i¼0 ciðr � �rrÞi.
The separation constant D ¼ dp0=dr is

D ¼ � d1 þ d2 log�rr
2�rrd
3



2
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where

d1 ¼ 2160AC2�rr4r1 � 1440BC2�rr4r1 � 275ACG�rr6r1

þ 60BCG�rr6r1 þ 135CG�rr8r1 þ 35AG2�rr8r1

� 60BG2�rr8r1 þ 5G2�rr10r1 � 2048AC2�rr3r21
þ 512ACG�rr5r21 � 256CG�rr7r21 � 96AG2�rr7r21
þ 128BG2�rr7r21 þ 504AC2�rr2r31 þ 288BC2�rr2r31
þ 360C2�rr4r31 � 279ACG�rr4r31 � 144BCG�rr4r31
þ 165CG�rr6r31 þ 95AG2�rr6r31 � 96BG2�rr6r31
� 9G2�rr8r31 � 90BC2�rrr41 � 135C2�rr3r41
þ 40ACG�rr3r41 þ 60BCG�rr3r41 � 30CG�rr5r41
� 40AG2�rr5r41 þ 30BG2�rr5r41 þ 5G2�rr7r41 � 8AC2r51
þ 24C2�rr2r51 þ 2ACG�rr2r51 � 12BCG�rr2r51 þ 8CG�rr4r51
þ 6AG2�rr4r51 � 4BG2�rr4r51 þ 2160AC2�rr4r2

� 1440BC2�rr4r2 � 275ACG�rr6r2 þ 60BCG�rr6r2

þ 135CG�rr8r2 þ 35AG2�rr8r2 � 60BG2�rr8r2

þ 5G2�rr10r2 � 3584AC2�rr3r1r2 þ 896ACG�rr5r1r2

� 448CG�rr7r1r2 � 168AG2�rr7r1r2 þ 224BG2�rr7r1r2

þ 1296AC2�rr2r21r2 þ 1152BC2�rr2r21r2 þ 720C2�rr4r21r2

� 936ACG�rr4r21r2 � 216BCG�rr4r21r2 þ 420CG�rr6r21r2

þ 280AG2�rr6r21r2 � 264BG2�rr6r21r2 � 36G2�rr8r21r2

� 360BC2�rrr31r2 � 540C2�rr3r31r2 þ 352ACG�rr3r31r2

þ 240BCG�rr3r31r2 � 120CG�rr5r31r2 � 208AG2�rr5r31r2

þ 120BG2�rr5r31r2 þ 44G2�rr7r31r2 � 32AC2r41r2

þ 96C2�rr2r41r2 � 37ACG�rr2r41r2 � 48BCG�rr2r41r2

� 13CG�rr4r41r2 þ 69AG2�rr4r41r2 � 16BG2�rr4r41r2

� 15G2�rr6r41r2 � 8AG2�rr3r51r2 � 2048AC2�rr3r22
þ 512ACG�rr5r22 � 256CG�rr7r22 � 96AG2�rr7r22
þ 128BG2�rr7r22 þ 1296AC2�rr2r1r22 þ 1152BC2�rr2r1r22
þ 720C2�rr4r1r22 � 936ACG�rr4r1r22 � 216BCG�rr4r1r22
þ 420CG�rr6r1r22 þ 280AG2�rr6r1r22 � 264BG2�rr6r1r22
� 36G2�rr8r1r22 � 540BC2�rrr21r

2
2 � 810C2�rr3r21r

2
2

þ 496ACG�rr3r21r
2
2 þ 360BCG�rr3r21r

2
2 � 180CG�rr5r21r

2
2

� 304AG2�rr5r21r
2
2 þ 180BG2�rr5r21r

2
2 þ 62G2�rr7r21r

2
2

� 80AC2r31r
2
2 þ 240C2�rr2r31r

2
2 � 70ACG�rr2r31r

2
2

� 120BCG�rr2r31r
2
2 � 10CG�rr4r31r

2
2 þ 150AG2�rr4r31r

2
2

� 40BG2�rr4r31r
2
2 � 30G2�rr6r31r

2
2 � 32AG2�rr3r41r

2
2

� 2ACGr51r
2
2 þ 6CG�rr2r51r

2
2 þ 2AG2�rr2r51r

2
2 þ 2G2�rr4r51r

2
2

þ 504AC2�rr2r32 þ 288BC2�rr2r32 þ 360C2�rr4r32
� 279ACG�rr4r32 � 144BCG�rr4r32 þ 165CG�rr6r32
þ 95AG2�rr6r32 � 96BG2�rr6r32 � 9G2�rr8r32 � 360BC2�rrr1r32
� 540C2�rr3r1r32 þ 352ACG�rr3r1r32 þ 240BCG�rr3r1r32
� 120CG�rr5r1r32 � 208AG2�rr5r1r32 þ 120BG2�rr5r1r32
þ 44G2�rr7r1r32 � 80AC2r21r
3
2 þ 240C2�rr2r21r

3
2

� 70ACG�rr2r21r
3
2 � 120BCG�rr2r21r

3
2 � 10CG�rr4r21r

3
2

þ 150AG2�rr4r21r
3
2 � 40BG2�rr4r21r

3
2 � 30G2�rr6r21r

3
2

� 40AG2�rr3r31r
3
2 � 3ACGr41r

3
2 þ 9CG�rr2r41r

3
2

þ 3AG2�rr2r41r
3
2 þ 3G2�rr4r41r

3
2 � 90BC2�rrr42 � 135C2�rr3r42

þ 40ACG�rr3r42 þ 60BCG�rr3r42 � 30CG�rr5r42
� 40AG2�rr5r42 þ 30BG2�rr5r42 þ 5G2�rr7r42 � 32AC2r1r42
þ 96C2�rr2r1r42 � 37ACG�rr2r1r42 � 48BCG�rr2r1r42
� 13CG�rr4r1r42 þ 69AG2�rr4r1r42 � 16BG2�rr4r1r42
� 15G2�rr6r1r42 � 32AG2�rr3r12r42 � 3ACGr31r

4
2

þ 9CG�rr2r31r
4
2 þ 3AG2�rr2r31r

4
2 þ 3G2�rr4r31r

4
2 � 8AC2r52

þ 24C2�rr2r52 þ 2ACG�rr2r52 � 12BCG�rr2r52 þ 8CG�rr4r52
þ 6AG2�rr4r52 � 4BG2�rr4r52 � 8AG2�rr3r1r52 � 2ACGr21r

5
2

þ 6CG�rr2r21r
5
2 þ 2AG2�rr2r21r

5
2 þ 2G2�rr4r21r

5
2

d2 ¼ �1440AC2�rr4r1 þ 60ACG�rr6r1 � 60AG2�rr8r1
þ 128AG2�rr7r21 þ 288AC2�rr2r31 � 144ACG�rr4r31
� 96AG2�rr6r31 � 90AC2�rrr41 þ 60ACG�rr3r41 þ 30AG2�rr5r41
� 12ACG�rr2r51 � 4AG2�rr4r51 � 1440AC2�rr4r2
þ 60ACG�rr6r2 � 60AG2�rr8r2 þ 224AG2�rr7r1r2
þ 1152AC2�rr2r21r2 � 216ACG�rr4r21r2 � 264AG2�rr6r21r2
� 360AC2�rrr31r2 þ 240ACG�rr3r31r2 þ 120AG2�rr5r31r2
� 48ACG�rr2r41r2 � 16AG2�rr4r41r2 þ 128AG2�rr7r22
þ 1152AC2�rr2r1r22 � 216ACG�rr4r1r22 � 264AG2�rr6r1r22
� 540AC2�rrr21r

2
2 þ 360ACG�rr3r21r

2
2 þ 180AG2�rr5r21r

2
2

� 120ACG�rr2r31r
2
2 � 40AG2�rr4r31r

2
2 þ 288AC2�rr2r32

� 144ACG�rr4r32 � 96AG2�rr6r32 � 360AC2�rrr1r32
þ 240ACG�rr3r1r32 þ 120AG2�rr5r1r32 � 120ACG�rr2r21r

3
2

� 40AG2�rr4r21r
3
2 � 90AC2�rrr42 þ 60ACG�rr3r42

þ 30AG2�rr5r42 � 48ACG�rr2r1r42 � 16AG2�rr4r1r42
� 12ACG�rr2r52 � 4AG2�rr4r52

d3 ¼ 720C2�rr3r1 � 30CG�rr5r1 þ 30G2�rr7r1 � 64G2�rr6r21
� 144C2�rrr31 þ 72CG�rr3r31 þ 48G2�rr5r31 þ 45C2r41
� 30CG�rr2r41 � 15G2�rr4r41 þ 6CG�rrr51 þ 2G2�rr3r51
þ 720C2�rr3r2 � 30CG�rr5r2 þ 30G2�rr7r2 � 112G2�rr6r1r2
� 576C2�rrr21r2 þ 108CG�rr3r21r2 þ 132G2�rr5r21r2
þ 180C2r31r2 � 120CG�rr2r31r2 � 60G2�rr4r31r2
þ 24CG�rrr41r2 þ 8G2�rr3r41r2 � 64G2�rr6r22 � 576C2�rrr1r22
þ 108CG�rr3r1r22 þ 132G2�rr5r1r22 þ 270C2r21r

2
2

� 180CG�rr2r21r
2
2 � 90G2�rr4r21r

2
2 þ 60CG�rrr31r

2
2

þ 20G2�rr3r31r
2
2 � 144C2�rrr32 þ 72CG�rr3r32 þ 48G2�rr5r32

þ 180C2r1r
3
2 � 120CG�rr2r1r

3
2 � 60G2�rr4r1r

3
2

þ 60CG�rrr21r
3
2 þ 20G2�rr3r21r

3
2 þ 45C2r42 � 30CG�rr2r42

� 15G2�rr4r42 þ 24CG�rrr1r42 þ 8G2�rr3r1r42 þ 6CG�rrr52
þ 2G2�rr3r5
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The coefficients ci�s are given by

c0 ¼ �CGðr1 � �rrÞðr2 � �rrÞðc01 þ c02 log�rrÞ
2�rrc03

where

c01 ¼ 212AC2�rr4 � 288BC2�rr4 þ 288DC2�rr4 þ 36C2�rr6

� 6BCG�rr6 þ 6DCG�rr6 þ 7CG�rr8 � 2BG2�rr8 þ 2DG2�rr8

þ G2�rr10 � 172AC2�rr3r1 þ 78BC2�rr3r1 � 78DC2�rr3r1

þ 9C2�rr5r1 þ 6BCG�rr5r1 � 6DCG�rr5r1 � 11CG�rr7r1

þ 4BG2�rr7r1 � 4DG2�rr7r1 � 2G2�rr9r1 þ 32AC2�rr2r21

� 18BC2�rr2r21 þ 18DC2�rr2r21 þ 21C2�rr4r21

� 12BCG�rr4r21 þ 12DCG�rr4r21 þ 10CG�rr6r21

� 2BG2�rr6r21 þ 2DG2�rr6r21 þ G2�rr8r21 � 172AC2�rr3r2

þ 78BC2�rr3r2 � 78DC2�rr3r2 þ 9C2�rr5r2 þ 6BCG�rr5r2

� 6DCG�rr5r2 � 11CG�rr7r2 þ 4BG2�rr7r2 � 4DG2�rr7r2

� 2G2�rr9r2 þ 80AC2�rr2r1r2 þ 60BC2�rr2r1r2

� 60DC2�rr2r1r2 � 6C2�rr4r1r2 þ 12BCG�rr4r1r2

� 12DCG�rr4r1r2 þ 10CG�rr6r1r2 � 8BG2�rr6r1r2

þ 8DG2�rr6r1r2 þ 4G2�rr8r1r2 � 4AC2�rrr21r2

� 18BC2�rrr21r2 þ 18DC2�rrr21r2 � 15C2�rr3r21r2

þ 6BCG�rr3r21r2 � 6DCG�rr3r21r2 � 11CG�rr5r21r2

þ 4BG2�rr5r21r2 � 4DG2�rr5r21r2 � 2G2�rr7r21r2

þ 32AC2�rr2r22 � 18BC2�rr2r22 þ 18DC2�rr2r22 þ 21C2�rr4r22

� 12BCG�rr4r22 þ 12DCG�rr4r22 þ 10CG�rr6r22

� 2BG2�rr6r22 þ 2DG2�rr6r22 þ G2�rr8r22 � 4AC2�rrr1r22

� 18BC2�rrr1r22 þ 18DC2�rrr1r22 � 15C2�rr3r1r22

þ 6BCG�rr3r1r22 � 6DCG�rr3r1r22 � 11CG�rr5r1r22

þ 4BG2�rr5r1r22 � 4DG2�rr5r1r22 � 2G2�rr7r1r22

� 4AC2r21r
2
2 þ 12C2�rr2r21r

2
2 � 6BCG�rr2r21r

2
2

þ 6DCG�rr2r21r
2
2 þ 7CG�rr4r21r

2
2 � 2BG2�rr4r21r

2
2

þ 2DG2�rr4r21r
2
2 þ G2�rr6r21r

2
2

c02 ¼ �288AC2�rr4 � 6ACG�rr6 � 2AG2�rr8 þ 78AC2�rr3r1

þ 6ACG�rr5r1 þ 4AG2�rr7r1 � 18AC2�rr2r21 � 12ACG�rr4r21

� 2AG2�rr6r21 þ 78AC2�rr3r2 þ 6ACG�rr5r2 þ 4AG2�rr7r2

þ 60AC2�rr2r1r2 þ 12ACG�rr4r1r2 � 8AG2�rr6r1r2

� 18AC2�rrr21r2 þ 6ACG�rr3r21r2 þ 4AG2�rr5r21r2

� 18AC2�rr2r22 � 12ACG�rr4r22 � 2AG2�rr6r22

� 18AC2�rrr1r22 þ 6ACG�rr3r1r22 þ 4AG2�rr5r1r22
� 6ACG�rr2r21r
2
2 � 2AG2�rr4r21r

2
2

c03 ¼ �576C3�rr3 þ 24C2G�rr5 þ 3CG2�rr7 þ G3�rr9

þ 432C3�rr2r1 � 39C2G�rr4r1 � 6CG2�rr6r1 � 3G3�rr8r1

� 192C3�rrr21 � 24C2G�rr3r21 þ 9CG2�rr5r21 þ 3G3�rr7r21

þ 36C3r31 þ 3C2G�rr2r31 � 6CG2�rr4r31 � G3�rr6r31

þ 432C3�rr2r2 � 39C2G�rr4r2 � 6CG2�rr6r2 � 3G3�rr8r2

� 192C3�rrr1r2 þ 120C2G�rr3r1r2 þ 3CG2�rr5r1r2

þ 9G3�rr7r1r2 þ 36C3r21r2 þ 3C2G�rr2r21r2 � 6CG2�rr4r21r2

� 9G3�rr6r21r2 þ 9CG2�rr3r31r2 þ 3G3�rr5r31r2 � 192C3�rrr22

� 24C2G�rr3r22 þ 9CG2�rr5r22 þ 3G3�rr7r22 þ 36C3r1r22

þ 3C2G�rr2r1r22 � 6CG2�rr4r1r22 � 9G3�rr6r1r22

� 48C2G�rrr21r
2
2 þ 3CG2�rr3r21r

2
2 þ 9G3�rr5r21r

2
2

þ 9C2Gr31r
2
2 � 6CG2�rr2r31r

2
2 � 3G3�rr4r31r

2
2 þ 36C3r32

þ 3C2G�rr2r32 � 6CG2�rr4r32 � G3�rr6r32 þ 9CG2�rr3r1r
3
2

þ 3G3�rr5r1r32 þ 9C2Gr21r
3
2 � 6CG2�rr2r21r

3
2 � 3G3�rr4r21r

3
2

þ 3CG2�rrr31r
3
2 þ G3�rr3r31r

3
2

c1 ¼
CGðc04 þ c05 log�rrÞ

c03

where

c04 ¼ �120AC2�rr4 þ 288BC2�rr4 � 288DC2�rr4 � 72C2�rr6

� 23ACG�rr6 þ 24BCG�rr6 � 24DCG�rr6 � 3CG�rr8

þ AG2�rr8 �G2�rr10 þ 144AC2�rr3r1 � 252BC2�rr3r1

þ 252DC2�rr3r1 þ 54C2�rr5r1 þ 51ACG�rr5r1

� 36BCG�rr5r1 þ 36DCG�rr5r1 þ 3CG�rr7r1

� 3AG2�rr7r1 þ 3G2�rr9r1 � 72AC2�rr2r21 þ 96BC2�rr2r21
� 96DC2�rr2r21 � 24C2�rr4r21 � 33ACG�rr4r21
þ 24BCG�rr4r21 � 24DCG�rr4r21 � 9CG�rr6r21 þ 3AG2�rr6r21
� 3G2�rr8r21 þ 12AC2�rrr31 � 18BC2�rrr31 þ 18DC2�rrr31
þ 9C2�rr3r31 þ 5ACG�rr3r31 � 6BCG�rr3r31 þ 6DCG�rr3r31
þ 6CG�rr5r31 � AG2�rr5r31 þG2�rr7r31 þ 144AC2�rr3r2

� 252BC2�rr3r2 þ 252DC2�rr3r2 þ 54C2�rr5r2

þ 51ACG�rr5r2 � 36BCG�rr5r2 þ 36DCG�rr5r2

þ 3CG�rr7r2 � 3AG2�rr7r2 þ 3G2�rr9r2 � 72AC2�rr2r1r2

þ 96BC2�rr2r1r2 � 96DC2�rr2r1r2 � 24C2�rr4r1r2

� 111ACG�rr4r1r2 þ 24BCG�rr4r1r2 � 24DCG�rr4r1r2

þ 9CG�rr6r1r2 þ 9AG2�rr6r1r2 � 9G2�rr8r1r2

þ 12AC2�rrr21r2 � 18BC2�rrr21r2 þ 18DC2�rrr21r2

þ 9C2�rr3r21r2 þ 69ACG�rr3r21r2 � 6BCG�rr3r21r2

þ 6DCG�rr3r21r2 þ 6CG�rr5r21r2 � 9AG2�rr5r21r2

þ 9G2�rr7r21r2 � 9ACG�rr2r31r2 � 9CG�rr4r31r2

þ 3AG2�rr4r31r2 � 3G2�rr6r31r2 � 72AC2�rr2r22 þ 96BC2�rr2r22
� 96DC2�rr2r2 � 24C2�rr4r2 � 33ACG�rr4r2 þ 24BCG�rr4r2
2 2 2 2
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� 24DCG�rr4r22 � 9CG�rr6r22 þ 3AG2�rr6r22 � 3G2�rr8r22
þ 12AC2�rrr1r22 � 18BC2�rrr1r22 þ 18DC2�rrr1r22
þ 9C2�rr3r1r22 þ 69ACG�rr3r1r22 � 6BCG�rr3r1r22
þ 6DCG�rr3r1r22 þ 6CG�rr5r1r22 � 9AG2�rr5r1r22
þ 9G2�rr7r1r22 � 39ACG�rr2r21r

2
2 � 15CG�rr4r21r

2
2

þ 9AG2�rr4r21r
2
2 � 9G2�rr6r21r

2
2 þ 3ACG�rrr31r

2
2 þ 9CG�rr3r31r

2
2

� 3AG2�rr3r31r
2
2 þ 3G2�rr5r31r

2
2 þ 12AC2�rrr32 � 18BC2�rrr32

þ 18DC2�rrr32 þ 9C2�rr3r32 þ 5ACG�rr3r32 � 6BCG�rr3r32
þ 6DCG�rr3r32 þ 6CG�rr5r32 � AG2�rr5r32 þ G2�rr7r32
� 9ACG�rr2r1r32 � 9CG�rr4r1r32 þ 3AG2�rr4r1r32
� 3G2�rr6r1r32 þ 3ACG�rrr21r

3
2 þ 9CG�rr3r21r

3
2 � 3AG2�rr3r21r

3
2

þ 3G2�rr5r21r
3
2 þ ACGr31r

3
2 � 3CG�rr2r31r

3
2 þ AG2�rr2r31r

3
2

� G2�rr4r31r
3
2

c05 ¼ 288AC2�rr4 þ 24ACG�rr6 � 252AC2�rr3r1 � 36ACG�rr5r1

þ 96AC2�rr2r21 þ 24ACG�rr4r21 � 18AC2�rrr31 � 6ACG�rr3r31

� 252AC2�rr3r2 � 36ACG�rr5r2 þ 96AC2�rr2r1r2

þ 24ACG�rr4r1r2 � 18AC2�rrr21r2 � 6ACG�rr3r21r2

þ 96AC2�rr2r22 þ 24ACG�rr4r22 � 18AC2�rrr1r22

� 6ACG�rr3r1r22 � 18AC2�rrr32 � 6ACG�rr3r32

c2 ¼
�BG
2

þ DG
2

þ a0G
2C

� a1
2�rr

þ G�rr2

4
� AG log�rr

2

c3 ¼
a1G
6C

þ a1
6�rr2

� a2
3�rr

� AG
6�rr

þ G�rr
6

c4 ¼
G
24

þ a2G
12C

� a1
12�rr3

þ a2
6�rr2

þ AG
24�rr2

� a3
4�rr
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